Question

The distance of the point $$\left( {1,\,3,\, - 7} \right)$$   from the plane passing through the point $$\left( {1,\, - 1,\, - 1} \right),$$   having normal perpendicular to both the lines $$\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 4}}{3}$$     and $$\frac{{x - 2}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 7}}{{ - 1}},$$      is :

A. $$\frac{{10}}{{\sqrt {74} }}$$
B. $$\frac{{20}}{{\sqrt {74} }}$$
C. $$\frac{{10}}{{\sqrt {83} }}$$  
D. $$\frac{5}{{\sqrt {83} }}$$
Answer :   $$\frac{{10}}{{\sqrt {83} }}$$
Solution :
Let the plane be $$a\left( {x - 1} \right) + b\left( {y + 1} \right) + c\left( {z + 1} \right) = 0$$
Normal vector
\[\left| \begin{array}{l} \hat i\,\,\,\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\,\,\,\,\hat k\\ 1\,\,\, - 2\,\,\,\,\,\,\,\,\,\,3\\ 2\,\,\, - 1\,\, - 1 \end{array} \right| = 5\hat i + 7\hat j + 3\hat k\]
So plane is
$$\eqalign{ & 5\left( {x - 1} \right) + 7\left( {y + 1} \right) + 3\left( {z + 1} \right) = 0 \cr & \Rightarrow 5x + 7y + 3z + 5 = 0 \cr} $$
Distance of point $$\left( {1,\,3,\, - 7} \right)$$   from the plane is
$$\frac{{5 + 21 - 21 + 5}}{{\sqrt {25 + 49 + 9} }} = \frac{{10}}{{\sqrt {83} }}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section