Question

The distance between the planes $$x + 2y - 3z - 4 = 0$$     and $$2x + 4y - 6z = 1$$    along the line $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{2}$$    is :

A. $$\frac{{19}}{{22}}$$
B. $$\frac{3}{{22}}$$
C. $$5$$
D. none of these  
Answer :   none of these
Solution :
Any point on $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{2}$$   is $$\left( {r,\, - 3r,\,2r} \right).$$   It is on the first plane if
$$\eqalign{ & r + 2\left( { - 3r} \right) - 3\left( {2r} \right) - 4 = 0 \cr & {\text{or }} - 11r - 4 = 0 \cr & {\text{or }}r = - \frac{4}{{11}} \cr & \therefore {\text{ the point is }}\left( { - \frac{4}{{11}},\,\frac{{12}}{{11}},\, - \frac{8}{{11}}} \right) \cr & \left( {r,\, - 3r,\,2r} \right){\text{ is on the second plane if }} \cr & 2r + 4\left( { - 3r} \right) - 6\left( {2r} \right) = 1 \cr & {\text{or }} - 22r = 1 \cr & {\text{or }}r = - \frac{1}{{22}} \cr & \therefore {\text{ the point is }}\left( { - \frac{1}{{22}},\,\frac{3}{{22}},\, - \frac{1}{{11}}} \right) \cr & \therefore {\text{ The distance }} = \sqrt {{{\left( { - \frac{4}{{11}} + \frac{1}{{22}}} \right)}^2} + {{\left( {\frac{{12}}{{11}} - \frac{3}{{22}}} \right)}^2} + {{\left( { - \frac{8}{{11}} + \frac{1}{{11}}} \right)}^2}} \cr & = \sqrt {\frac{{49}}{{{{\left( {22} \right)}^2}}} + \frac{{441}}{{{{\left( {22} \right)}^2}}} + \frac{{49}}{{{{\left( {11} \right)}^2}}}} \cr & = \frac{1}{{22}}\sqrt {49 + 441 + 196} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section