Question

The distance between the lines $$\frac{{x - 4}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{6}$$     and $$\frac{x}{{ - 1}} = \frac{{y - 1}}{{\frac{3}{2}}} = \frac{{z + 1}}{{ - 3}}$$     is :

A. $$\sqrt {\frac{{629}}{7}} $$
B. $$\sqrt {\frac{{39}}{7}} $$
C. $$\frac{{\sqrt {629} }}{7}$$  
D. none of these
Answer :   $$\frac{{\sqrt {629} }}{7}$$
Solution :
$$\eqalign{ & {\text{Lines are}}\,\frac{{x - 4}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{6} \cr & \Rightarrow \frac{{x - 4}}{{ - 1}} = \frac{{y + 1}}{{\frac{3}{2}}} = \frac{z}{{ - 3}}\, \to \left( 1 \right) \cr & {\text{and }}\frac{x}{{ - 1}} = \frac{{y - 1}}{{\frac{3}{2}}} = \frac{{z + 1}}{{ - 3}}\, \to \left( 2 \right) \cr & {\text{Clearly both lines are parallel with}} \cr & \overrightarrow {{a_1}} = 4\hat i - \hat j,\,\overrightarrow {{a_2}} = \hat j - \hat k{\text{ and }}\overrightarrow b = - \hat i - \frac{3}{2}\hat j - 3\hat k \cr & {\text{Using shortest distance between parallel lines}} \cr} $$
\[\begin{array}{l} {\rm{distance}} = \frac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\\ = \frac{{\left| \begin{array}{l} \,\,\,\overrightarrow i \,\,\,\,\,\overrightarrow j \,\,\,\,\,\,\overrightarrow k \\ - 1\,\,\,\,\,\,\frac{3}{2}\,\,\,\, - 3\\ - 4\,\,\,\,\,\,\,2\,\,\,\,\, - 1 \end{array} \right|}}{{\sqrt {\frac{7}{2}} }}\\ = \frac{{\left| {\frac{9}{2}\hat i - 11\hat j + 4\hat k} \right|}}{{\frac{7}{2}}}\\ = \frac{{\sqrt {629} }}{7} \end{array}\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section