Question

The direction cosines of the projection of the line $$\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}$$     on the plane $$2x + y - 3z = 5$$    are :

A. $$2,\, - 1,\,1$$
B. $$\frac{2}{7},\,\frac{{ - 1}}{7},\,\frac{1}{7}$$
C. $$\frac{{ - 2}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }}$$
D. $$\frac{2}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }}$$  
Answer :   $$\frac{2}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }}$$
Solution :
3D Geometry and Vectors mcq solution image
$$\eqalign{ & {\text{Let }}P = \left( {\alpha ,\,\beta ,\,\gamma } \right). \cr & {\text{Then }}2\alpha + \beta - 3\gamma = 5.....(1) \cr & {\text{and }}\frac{{\alpha - 0}}{2} = \frac{{\beta - 1}}{2} = \frac{{\gamma + 1}}{{ - 3}}......(2) \cr & {\text{Solving (1) and (2),}}\,\alpha = \frac{1}{7},\,\beta = \frac{{15}}{{14}},\,\gamma = \frac{{ - 17}}{{14}} \cr & {\text{Let }}Q = \left( {\alpha ',\,\beta ',\,\gamma '} \right). \cr & {\text{Then }}2\alpha ' + \beta ' - 3\gamma ' = 5.....(3) \cr & {\text{and }}\frac{{\alpha ' + 2}}{2} = \frac{{\beta ' - 2}}{1} = \frac{{\gamma ' + 2}}{{ - 3}}......(4) \cr & {\text{Solving (3) and (4),}}\,\alpha ' = \frac{{ - 13}}{7},\,\beta ' = \frac{{29}}{{14}},\,\gamma ' = \frac{{ - 31}}{{14}} \cr} $$
$$\therefore $$  direction ratios of $$PQ$$  are $$\frac{1}{7} - \left( { - \frac{{13}}{7}} \right),\,\frac{{15}}{{14}} - \frac{{29}}{{14}},\,\frac{{ - 17}}{{14}} - \left( {\frac{{ - 31}}{{14}}} \right)$$         i.e., $$2,\, - 1,\,1.$$   So, direction cosines are $$\frac{2}{{\sqrt 6 }},\,\frac{{ - 1}}{{\sqrt 6 }},\,\frac{1}{{\sqrt 6 }}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section