Question

The differential equation representing the family of curves $${y^2} = 2c\left( {x + \sqrt c } \right),$$     where $$c > 0,$$   is a parameter, is of order and degree as follows :

A. order 1, degree 2
B. order 1, degree 1
C. order 1, degree 3  
D. order 2, degree 2
Answer :   order 1, degree 3
Solution :
$$\eqalign{ & {y^2} = 2c\left( {x + \sqrt c } \right)\,.....({\text{i}}) \cr & 2yy' = 2c.1\,\,{\text{or}}\,\,yy' = c\,.....({\text{ii}}) \cr & \Rightarrow {y^2} = 2yy'\left( {x + \sqrt {yy'} } \right) \cr} $$
[On putting value of $$c$$ from (ii) in (i)]
On simplifying, we get
$${\left( {y - 2xy'} \right)^2} = 4yy{'^3}\,.....({\text{iii}})$$
Hence equation (iii) is of order 1 and degree 3

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section