Question

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola  
D. a hyperbola
Answer :   a parabola
Solution :
KEY CONCEPT :
The equation $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$
represents a parabola if $$\Delta \ne 0$$  and $${h^2} = ab$$
where $$\Delta = abc + 2fgh - a{f^2} - b{g^2} - c{h^2}$$
Now we have $$x = {t^2} + t + 1$$    and $$y = {t^2} - t + 1$$
$$\frac{{x + y}}{2} = {t^2} + 1,\,\frac{{x - y}}{2} = t$$       ( Adding and subtracting values of $$x$$ and $$y$$ )
Eliminating $$t,\,\,\,2\left( {x + y} \right) = {\left( {x - y} \right)^2} + 4.....(1)$$
$$ \Rightarrow {x^2} - 2xy + {y^2} - 2x - 2y + 4 = 0.....(2)$$
Here, $$a = 1,\,h = - 1,\,b = 1,\,g = - 1,\,f = - 1,\,c = 4$$
$$\therefore \Delta \ne 0.\,\,{\text{and }}{h^2} = ab$$
Hence the given curve represents a parabola.

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section