Question

The coordinates of point in $$xy$$ -plane which is equidistant from three points $$A\left( {2,\,0,\,3} \right),\,B\left( {0,\,3,\,2} \right)$$     and $$C\left( {0,\,0,\,1} \right)$$   are :

A. $$\left( {3,\,2,\,0} \right)$$  
B. $$\left( {3,\,4,\,0} \right)$$
C. $$\left( {0,\,0,\,3} \right)$$
D. $$\left( {2,\,3,\,0} \right)$$
Answer :   $$\left( {3,\,2,\,0} \right)$$
Solution :
We know that $$z$$-co-ordinate of every point on $$xy$$ -plane is zero. So, let $$P\left( {x,\,y,\,0} \right)$$   be a point in $$xy$$ -plane such that
$$\eqalign{ & PA = PB = PC \cr & {\text{Now}},\,PA = PB \Rightarrow P{A^2} = P{B^2} \cr & \Rightarrow {\left( {x - 2} \right)^2} + {\left( {y - 0} \right)^2} + {\left( {0 - 3} \right)^2} = {\left( {x - 0} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {0 - 2} \right)^2} \cr & \Rightarrow 4x - 6y = 0 \cr & \Rightarrow 2x - 3y = 0......\left( 1 \right) \cr & PB = PC \Rightarrow P{B^2} = P{C^2} \cr & \Rightarrow {\left( {x - 0} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {0 - 2} \right)^2} = {\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} + {\left( {0 - 1} \right)^2} \cr & \Rightarrow - 6y + 12 = 0 \cr & \Rightarrow y = 2......\left( 2 \right) \cr & {\text{Putting }}y = 2{\text{ in }}\left( 1 \right){\text{, we obtain }}x = 3 \cr & {\text{Hence, the required point is }}\left( {3,\,2,\,0} \right) \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section