Question

The coefficient of $$x^{100}$$ in the expansion of $$\sum\limits_{j = 0}^{200} {{{\left( {1 + x} \right)}^j}} $$   is :

A. \[\left( {\begin{array}{*{20}{c}} {200}\\ {100} \end{array}} \right)\]  
B. \[\left( {\begin{array}{*{20}{c}} {201}\\ {102} \end{array}} \right)\]
C. \[\left( {\begin{array}{*{20}{c}} {200}\\ {101} \end{array}} \right)\]
D. \[\left( {\begin{array}{*{20}{c}} {201}\\ {100} \end{array}} \right)\]
Answer :   \[\left( {\begin{array}{*{20}{c}} {200}\\ {100} \end{array}} \right)\]
Solution :
$${\left( {1 + x} \right)^j} = 1 + {\,^j}{C_1}x + {\,^j}{C_2}{x^2} + {\,^j}{C_3}{x^3} + ..... + {\,^j}{C_{100}}{x^{100}} + ..... + {\,^j}{C_{200}}{x^{200}}$$
$$\therefore $$ Coefficient of $$x^{100}$$ in the expansion of $${\left( {1 + x} \right)^j} = {\,^j}{C_{100}}$$
Coefficient of $$x^{100}$$ in the expansion of
$$\sum\limits_{j = 0}^{200} {{{\left( {1 + x} \right)}^j}} $$   will be equal to $$\sum\limits_{j = 100}^{200} {^j{C_{100}}} $$
$$ = {\,^{100}}{C_{100}} + {\,^{101}}{C_{100}} + {\,^{102}}{C_{100}} + ..... + {\,^{200}}{C_{100}}$$
\[ = {\,^{200}}{C_{100}} = \left( {\begin{array}{*{20}{c}} {200}\\ {100} \end{array}} \right)\]

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section