Question

The co-efficient of $$x^6$$ in $$\left\{ {{{\left( {1 + x} \right)}^6} + {{\left( {1 + x} \right)}^7} + ..... + {{\left( {1 + x} \right)}^{15}}} \right\}$$        is

A. $$^{16}{C_9}$$  
B. $$^{16}{C_5} - {\,^6}{C_5}$$
C. $$^{16}{C_6} - 1$$
D. None of these
Answer :   $$^{16}{C_9}$$
Solution :
Expression $$ = \frac{{{{\left( {1 + x} \right)}^6}\left\{ {1 - {{\left( {1 + x} \right)}^{10}}} \right\}}}{{1 - \left( {1 + x} \right)}} = \frac{{{{\left( {1 + x} \right)}^{16}} - {{\left( {1 + x} \right)}^6}}}{x}$$
∴ the required co-efficient
= the co-efficient of $$x^7$$ in $$\left\{ {{{\left( {1 + x} \right)}^{16}} - {{\left( {1 + x} \right)}^6}} \right\}$$
$$ = {\,^{16}}{C_7} = {\,^{16}}{C_{16 - 7}}.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section