Question

The co-efficient of $${x^{15}}$$ in the product $$\left( {1 - x} \right)\left( {1 - 2x} \right)\left( {1 - {2^2} \cdot x} \right)\left( {1 - {2^3} \cdot x} \right).....\left( {1 - {2^{15}} \cdot x} \right)$$           is equal to

A. $${2^{105}} - {2^{121}}$$  
B. $${2^{121}} - {2^{105}}$$
C. $${2^{120}} - {2^{104}}$$
D. none of these
Answer :   $${2^{105}} - {2^{121}}$$
Solution :
Product $$ = \left( { - 1} \right)\left( { - 2} \right)\left( { - {2^2}} \right).....\left( { - {2^{15}}} \right)\left( {x - 1} \right)\left( {x - \frac{1}{2}} \right)\left( {x - \frac{1}{{{2^2}}}} \right)\left( {x - \frac{1}{{{2^3}}}} \right).....\left( {x - \frac{1}{{{2^{15}}}}} \right)$$
$$ = {2^{1 + 2 + 3 + ..... + 15}}\left( {x - 1} \right)\left( {x - \frac{1}{2}} \right)\left( {x - \frac{1}{{{2^2}}}} \right).....\left( {x - \frac{1}{{{2^{15}}}}} \right)$$
∴ co-efficient of $${x^{15}} = {2^{1 + 2 + 3 + ..... + 15}}.\left( { - 1 - \frac{1}{2} - \frac{1}{{{2^2}}} - ..... - \frac{1}{{{2^{15}}}}} \right).$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section