Question

The area of the region described by $$A = \left\{ {\left( {x,\,y} \right):{x^2} + {y^2} \leqslant 1\,{\text{and}}\,{y^2} \leqslant 1 - x} \right\}$$        is:

A. $$\frac{\pi }{2} - \frac{2}{3}$$
B. $$\frac{\pi }{2} + \frac{2}{3}$$
C. $$\frac{\pi }{2} + \frac{4}{3}$$  
D. $$\frac{\pi }{2} - \frac{4}{3}$$
Answer :   $$\frac{\pi }{2} + \frac{4}{3}$$
Solution :
Given curves are $${x^2} + {y^2} = 1$$   and $${y^2} = 1 - x.$$
Intersecting points are $$x=0,\,1$$
Area of shaded portion is the required area.
So, Required Area $$=$$ Area of semi-circle $$+$$ Area bounded by parabola
$$\eqalign{ & = \frac{{\pi {r^2}}}{2} + 2\int\limits_0^1 {\sqrt {1 - x} \,dx} \cr & = \frac{\pi }{2} + 2\int\limits_0^1 {\sqrt {1 - x} \,dx} \,\,\,\,\,\left( {\because {\text{radius of circle}} = 1} \right) \cr & = \frac{\pi }{2} + 2\left[ {\frac{{{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}{{ - \frac{3}{2}}}} \right]_0^1 \cr & = \frac{\pi }{2} - \frac{4}{3}\left( { - 1} \right) \cr & = \frac{\pi }{2} + \frac{4}{3}{\text{ sq}}{\text{. unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section