Solution :
Clearly, $$\angle BOD = 2C$$
$$\eqalign{
& \therefore \,\,\cos 2C = \frac{{{1^2} + {1^2} - {{\left( {\sqrt 3 } \right)}^2}}}{{2 \cdot 1 \cdot 1}}\,\,{\text{or, }}\cos 2C = - \frac{1}{2} \cr
& \therefore \,\,C = {60^ \circ } \cr
& \therefore \,\,A = {180^ \circ } - C = {120^ \circ }. \cr} $$

So, $$\cos{120^ \circ } = \frac{{A{D^2} + {1^2} - {{\left( {\sqrt 3 } \right)}^2}}}{{2 \cdot AD \cdot 1}}$$
$$\eqalign{
& \therefore \,\, - \frac{1}{2} = \frac{{A{D^2} - 2}}{{2AD}}\,\,{\text{or, }}A{D^2} + AD - 2 = 0 \cr
& {\text{or, }}AD = 1. \cr} $$
Now, $${\text{ar}}\left( {ABCD} \right) = {\text{ar}}\left( {\vartriangle ADB} \right) + {\text{ar}}\left( {\vartriangle BCD} \right)$$
or, $$\frac{{3\sqrt 3 }}{4} = \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin {120^ \circ } + \frac{1}{2} \cdot BC \cdot CD \cdot \sin {60^ \circ }\,\,{\text{or, }}BC \cdot CD = 2.$$