Question

The area of a cyclic quadrilateral $$ABCD$$   is $$\frac{{\left( {3\sqrt 3 } \right)}}{4}.$$  The radius of the circle circumscribing it is $$1.$$ If $$AB = 1,BD = \sqrt 3 $$    then $$BC \cdot CD$$   is equal to

A. $$2$$  
B. $$3 - \frac{1}{{\sqrt 3 }}$$
C. $$3\sqrt 3 + 1$$
D. None of these
Answer :   $$2$$
Solution :
Clearly, $$\angle BOD = 2C$$
$$\eqalign{ & \therefore \,\,\cos 2C = \frac{{{1^2} + {1^2} - {{\left( {\sqrt 3 } \right)}^2}}}{{2 \cdot 1 \cdot 1}}\,\,{\text{or, }}\cos 2C = - \frac{1}{2} \cr & \therefore \,\,C = {60^ \circ } \cr & \therefore \,\,A = {180^ \circ } - C = {120^ \circ }. \cr} $$
Properties and Solutons of Triangle mcq solution image
So, $$\cos{120^ \circ } = \frac{{A{D^2} + {1^2} - {{\left( {\sqrt 3 } \right)}^2}}}{{2 \cdot AD \cdot 1}}$$
$$\eqalign{ & \therefore \,\, - \frac{1}{2} = \frac{{A{D^2} - 2}}{{2AD}}\,\,{\text{or, }}A{D^2} + AD - 2 = 0 \cr & {\text{or, }}AD = 1. \cr} $$
Now, $${\text{ar}}\left( {ABCD} \right) = {\text{ar}}\left( {\vartriangle ADB} \right) + {\text{ar}}\left( {\vartriangle BCD} \right)$$
or, $$\frac{{3\sqrt 3 }}{4} = \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin {120^ \circ } + \frac{1}{2} \cdot BC \cdot CD \cdot \sin {60^ \circ }\,\,{\text{or, }}BC \cdot CD = 2.$$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section