Question

The area (in sq. units) of the region $$\left\{ {\left( {x,\,y} \right):x \geqslant 0,\,x + y \leqslant 3,\,{x^2} \leqslant 4y\,\,{\text{and}}\,y \leqslant 1 + \sqrt x } \right\}$$           is :

A. $$\frac{5}{2}$$  
B. $$\frac{59}{12}$$
C. $$\frac{3}{2}$$
D. $$\frac{7}{3}$$
Answer :   $$\frac{5}{2}$$
Solution :
Application of Integration mcq solution image
Area of shaded region :
$$\eqalign{ & = \int\limits_0^1 {\left( {1 + \sqrt x } \right)dx} + \int\limits_1^2 {\left( {3 - x} \right)dx} - \int\limits_0^2 {\frac{{{x^2}}}{4}dx} \cr & = \left. x \right]_0^1 + \left. {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_0^1 + \left. {3x} \right]_1^2 - \left. {\frac{{{x^2}}}{2}} \right]_1^2 - \left. {\frac{{{x^3}}}{{12}}} \right]_0^2 \cr & = \frac{5}{2}\,{\text{sq}}{\text{. units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section