Question

The area (in sq. units) of the region described by $$\left\{ {\left( {x,\,y} \right):{y^2} \leqslant 2x\,\,{\text{and}}\,y \geqslant 4x - 1} \right\}$$       is-

A. $$\frac{{15}}{{64}}$$
B. $$\frac{{9}}{{32}}$$  
C. $$\frac{{7}}{{32}}$$
D. $$\frac{{5}}{{64}}$$
Answer :   $$\frac{{9}}{{32}}$$
Solution :
Required area
Application of Integration mcq solution image
$$\eqalign{ & = {\text{Area of ABCD}} - {\text{ar (ABOCD)}} \cr & = \int\limits_{ - \frac{1}{2}}^1 {\frac{{y + 1}}{4}dy} - \int\limits_{ - \frac{1}{2}}^1 {\frac{{{y^2}}}{2}dy} \cr & = \frac{1}{4}\left[ {\frac{{{y^2}}}{2} + y} \right]_{ - \frac{1}{2}}^1 - \frac{1}{2}\left[ {\frac{{{y^3}}}{2}} \right]_{ - \frac{1}{2}}^1 \cr & = \frac{1}{4}\left[ {\frac{3}{2} + \frac{3}{8}} \right] - \frac{9}{{48}} \cr & = \frac{{15}}{{32}} - \frac{9}{{48}} \cr & = \frac{{27}}{{96}} \cr & = \frac{9}{{32}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section