Question

The area (in sq. units) of the region $$A = \left\{ {\left( {x,\,y} \right):{x^2} \leqslant y \leqslant x + 2} \right\}$$      is :

A. $$\frac{{10}}{3}$$
B. $$\frac{{9}}{2}$$  
C. $$\frac{{31}}{6}$$
D. $$\frac{{13}}{6}$$
Answer :   $$\frac{{9}}{2}$$
Solution :
Application of Integration mcq solution image
Required area is equal to the area under the curves $$y \geqslant {x^2}$$  and $$yd''x + 2$$
$$\eqalign{ & \therefore {\text{Required area :}} \cr & {\text{ = }}\int\limits_{ - 1}^2 {\left( {\left( {x + 2} \right) - {x^2}} \right)dx} \cr & {\text{ = }}\left( {\frac{{{x^2}}}{2} + 2x - \frac{{{x^3}}}{3}} \right)_{ - 1}^2 \cr & {\text{ = }}\left( {2 + 4 - \frac{8}{3}} \right) - \left( { + \frac{1}{2} - 2 + \frac{1}{3}} \right) \cr & {\text{ = }}\frac{9}{2} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section