Question

The area enclosed between the curves $$y = {\log _e}\left( {x + e} \right),\,x = {\log _e}\left( {\frac{1}{y}} \right),$$       and the $$x$$-axis is :

A. 2 sq. units  
B. 1 sq. unit
C. 4 sq. units
D. None of these
Answer :   2 sq. units
Solution :
$$y = {\log _e}\left( {x + e} \right),\,x = {\log _e}\left( {\frac{1}{y}} \right),{\text{ or }}y = {e^{ - x}}$$
For $$y = {\log _e}\left( {x + e} \right),$$    shift the graph of $$y = {\log _e}x,\,\,e$$    units to the left hand side.
Required area
$$\eqalign{ & = \int\limits_{1 - e}^0 {{{\log }_e}\left( {x + e} \right)} dx + \int\limits_0^\infty {{e^{ - x}}dx} \cr & = \left| {x\,{{\log }_e}\left( {x + e} \right)} \right|_{1 - e}^0 - \int\limits_{1 - e}^0 {\frac{x}{{x + e}}} dx - \left| {{e^{ - x}}} \right|_0^\infty \cr & = \int\limits_0^{1 - e} {\left( {1 - \frac{e}{{x + e}}} \right)dx - {e^{ - \infty }}} + {e^0} \cr & = \left| {x - e\,\log \left( {x + e} \right)} \right|_0^{1 - e} - 0 + 1 \cr & = 1 - e + e\,\log \,e + 1 \cr & = 2{\text{ sq}}{\text{. units}} \cr} $$
Application of Integration mcq solution image

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section