Solution :
$$y = a{x^2}\,\& \,x = a{y^2}$$
Points of intersection are $$O\left( {0,\,0} \right)\,\& \,A\left( {\frac{1}{a},\,\frac{1}{a}} \right)$$

$$\eqalign{
& \therefore \,{\text{Area}} = \int\limits_0^{\frac{1}{a}} {\left( {\sqrt {\frac{x}{a}} - a{x^2}} \right)} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,\frac{2}{{3{a^2}}} - \frac{1}{{3{a^2}}} = \frac{1}{{3{a^2}}} = 1 \cr
& \Rightarrow a = \frac{1}{{\sqrt 3 }} \cr} $$