Question

The approximate value of $${\left( {0.007} \right)^{\frac{1}{3}}} = ?$$

A. $$\frac{{23}}{{120}}$$  
B. $$\frac{{27}}{{120}}$$
C. $$\frac{{19}}{{120}}$$
D. $$\frac{{17}}{{120}}$$
Answer :   $$\frac{{23}}{{120}}$$
Solution :
$$\eqalign{ & {\text{Let }}f\left( x \right) = {x^{\frac{1}{3}}}\,\, \Rightarrow f'\left( x \right) = \frac{1}{3}{x^{ - \frac{2}{3}}} \cr & {\text{Now, }}f\left( {x + \Delta x} \right) - f\left( x \right) = f'\left( x \right).\Delta x = \frac{{\Delta x}}{{3\left( {{x^{\frac{2}{3}}}} \right)}} \cr & {\text{We may write, }}0.007 = 0.008 - 0.001, \cr & {\text{taking }}x = 0.008{\text{ and }}dx = - 0.001 \cr & {\text{we have, }}f\left( {0.007} \right) - f\left( {0.008} \right) = - \frac{{0.001}}{{3{{\left( {0.008} \right)}^{\frac{2}{3}}}}} \cr & \Rightarrow f\left( {0.007} \right) - {\left( {0.008} \right)^{\frac{1}{3}}} = - \frac{{0.001}}{{3{{\left( {0.2} \right)}^2}}} \cr & \Rightarrow f\left( {0.007} \right) = 0.2 - \frac{{0.001}}{{3\left( {0.04} \right)}} \cr & \Rightarrow f\left( {0.007} \right) = 0.2 - \frac{1}{{120}} \cr & \Rightarrow f\left( {0.007} \right) = \frac{{23}}{{120}} \cr & {\text{Hence, }}{\left( {0.007} \right)^{\frac{1}{3}}} = \frac{{23}}{{120}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section