Solution :
$$\eqalign{
& AB = h\left( {{\text{height of the tower}}} \right) \cr
& BD = 36\,m;\,\,BC = 49\,m \cr
& \angle D = {47^ \circ };\,\,\angle C = {43^ \circ } \cr} $$

$$\eqalign{
& {\text{Now, in }}\Delta \,ABD, \cr
& \tan {47^ \circ } = \frac{h}{{36\,m}}\,\,\,\,.....\left( {\text{i}} \right) \cr
& {\text{and in }}\Delta \,ABC,\tan {43^ \circ } = \frac{h}{{49\,m}} \cr
& \tan \left( {{{90}^ \circ } - {{47}^ \circ }} \right) = \frac{h}{{49}} \cr
& \therefore \cot {47^ \circ } = \frac{h}{{49}}\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Multiplying equations (i) and (ii)
$$\eqalign{
& \tan {47^ \circ } \cdot \cot {47^ \circ } = \frac{h}{{36}} \times \frac{h}{{49}} = 1 = \frac{{{h^2}}}{{36 \times 49}} \cr
& h = 6 \times 7 = 42\,m \cr} $$
$$\therefore $$ Option $$\left( {B} \right)$$ is correct.