Question

The angles of a right-angled triangle are in A.P. The ratio of the inradius and the perimeter is

A. $$\left( {2 - \sqrt 3 } \right):2\sqrt 3 $$  
B. $$1:8\sqrt 3 \left( {2 + \sqrt 3 } \right)$$
C. $$\left( {2 + \sqrt 3 } \right):4\sqrt 3 $$
D. None of these
Answer :   $$\left( {2 - \sqrt 3 } \right):2\sqrt 3 $$
Solution :
$$\left( {\alpha - \beta } \right) + \alpha + \left( {\alpha + \beta } \right) = {180^ \circ }\,\,{\text{and }}\alpha + \beta = {90^ \circ }.$$
∴ the angles are $${30^ \circ },{60^ \circ },{90^ \circ }.$$
$$\eqalign{ & \therefore \,\,\frac{a}{{\sin {{30}^ \circ }}} = \frac{b}{{\sin {{60}^ \circ }}} = \frac{c}{{\sin {{90}^ \circ }}} = 2R\,\,\,{\text{or, }}a = R,b = \sqrt 3 R,c = 2R. \cr & r = \frac{\vartriangle }{s} = \frac{{\frac{1}{2}R \cdot \sqrt 3 R}}{{\frac{1}{2}\left( {R + \sqrt 3 R + 2R} \right)}} = \frac{{\sqrt 3 R}}{{3 + \sqrt 3 }} \cr & {\text{and, }}2s = R + \sqrt 3 R + 2R = \left( {3 + \sqrt 3 } \right)R. \cr & \therefore \,\,\frac{r}{{2s}} = \frac{{\sqrt 3 R}}{{3 + \sqrt 3 }} \times \frac{1}{{\left( {3 + \sqrt 3 } \right)R}} = \frac{1}{{\left( {3 + \sqrt 3 } \right)\left( {\sqrt 3 + 1} \right)}} \cr & \frac{r}{{2s}} = \frac{1}{{6 + 4\sqrt 3 }} = \frac{1}{{2\sqrt 3 \left( {2 + \sqrt 3 } \right)}} = \frac{{2 - \sqrt 3 }}{{2\sqrt 3 }}. \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section