Question

Tangents at any point on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$   cut the axes at $$A$$ and $$B$$ respectively. If the rectangle $$OAPB$$   (where $$O$$ is the origin) is completed, then locus of point $$P$$ is given by :

A. $$\frac{{{a^2}}}{{{x^2}}} - \frac{{{b^2}}}{{{y^2}}} = 1$$  
B. $$\frac{{{a^2}}}{{{x^2}}} + \frac{{{b^2}}}{{{y^2}}} = 1$$
C. $$\frac{{{a^2}}}{{{y^2}}} - \frac{{{b^2}}}{{{x^2}}} = 1$$
D. None of these
Answer :   $$\frac{{{a^2}}}{{{x^2}}} - \frac{{{b^2}}}{{{y^2}}} = 1$$
Solution :
Equation of the tangent at the point $$'\theta '$$ is $$\frac{{x\,\sec \,\theta }}{a} - \frac{{y\,\tan \,\theta }}{b} = 1$$
$$\eqalign{ & \Rightarrow A{\text{ is}}\left( {a\,\cos \,\theta ,\,0} \right){\text{and }}B{\text{ is}}\left( {0,\, - b\,\cot \,\theta } \right) \cr & {\text{Let }}P{\text{ be}}\left( {h,\,k} \right) \Rightarrow h = a\,\cos \,\theta ,\,k = - b\,\cot \,\theta \cr & \Rightarrow \frac{k}{h} = - \frac{b}{{a\,\sin \,\theta }} \cr & \Rightarrow \sin \,\theta = - \frac{{bh}}{{ak}}{\text{ and cos}}\,\theta = \frac{h}{a} \cr} $$
Hyperbola mcq solution image
Square and add,
$$\eqalign{ & \Rightarrow \frac{{{b^2}{h^2}}}{{{a^2}{k^2}}} + \frac{{{h^2}}}{{{a^2}}} = 1 \cr & \Rightarrow \frac{{{b^2}}}{{{k^2}}} + 1 = \frac{{{a^2}}}{{{h^2}}} \cr & \Rightarrow \frac{{{a^2}}}{{{h^2}}} - \frac{{{b^2}}}{{{k^2}}} = 1 \cr} $$
Hence, locus of $$P$$ is $$\frac{{{a^2}}}{{{x^2}}} - \frac{{{b^2}}}{{{y^2}}} = 1$$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section