Solution :
Here equation of hyperbola is $$\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1$$
Now, $$PQ$$ is the chord of content
$$\therefore $$ Equation of $$PQ$$ is :
$$\eqalign{
& \frac{{x\left( 0 \right)}}{9} - \frac{{y\left( 3 \right)}}{{36}} = 1 \cr
& \Rightarrow y = - 12 \cr} $$

$$\eqalign{
& \therefore {\text{Area of }}\Delta PQT = \frac{1}{2} \times TR \times PQ \cr
& \because P \equiv \left( {3\sqrt 5 ,\, - 12} \right) \cr
& \therefore TR = 3 + 12 = 15 \cr
& \therefore {\text{Area of }}\Delta PQT = \frac{1}{2} \times 15 \times 6\sqrt 5 = 45\sqrt 5 \,\,{\text{sq}}{\text{. units}} \cr} $$