Question

Tangents are drawn to the hyperbola $$4{x^2} - {y^2} = 36$$    at the points $$P$$ and $$Q.$$  If these tangents intersect at the point $$T\left( {0,\,3} \right)$$  then the area (in square units) of $$\Delta PTQ$$   is :

A. $$54\sqrt 3 $$
B. $$60\sqrt 3 $$
C. $$36\sqrt 5 $$
D. $$45\sqrt 5 $$  
Answer :   $$45\sqrt 5 $$
Solution :
Here equation of hyperbola is $$\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1$$
Now, $$PQ$$  is the chord of content
$$\therefore $$ Equation of $$PQ$$  is :
$$\eqalign{ & \frac{{x\left( 0 \right)}}{9} - \frac{{y\left( 3 \right)}}{{36}} = 1 \cr & \Rightarrow y = - 12 \cr} $$
Hyperbola mcq solution image
$$\eqalign{ & \therefore {\text{Area of }}\Delta PQT = \frac{1}{2} \times TR \times PQ \cr & \because P \equiv \left( {3\sqrt 5 ,\, - 12} \right) \cr & \therefore TR = 3 + 12 = 15 \cr & \therefore {\text{Area of }}\Delta PQT = \frac{1}{2} \times 15 \times 6\sqrt 5 = 45\sqrt 5 \,\,{\text{sq}}{\text{. units}} \cr} $$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section