Question

Tangent is drawn to ellipse
$$\frac{{{x^2}}}{{27}} + {y^2} = 1$$   at $$\left( {3\sqrt 3 \cos \theta ,\sin \theta } \right)$$    (where $$\theta \in \left( {0,\frac{\pi }{2}} \right)$$  ).
Then the value of $$\theta $$ such that sum of intercepts on axes made by this tangent is minimum, is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{6}$$
C. $$\frac{\pi }{8}$$  
D. $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{8}$$
Solution :
$$\eqalign{ & {\text{Equation}}\,{\text{of}}\,{\text{tangent}}\,{\text{to}}\,{\text{the}}\,{\text{ellipse}}\,\frac{{{x^2}}}{{27}} + {y^2} = 1\,{\text{at}} \cr & \left( {3\sqrt 3 \cos \theta ,\sin \theta } \right),\theta \in \left( {0,\frac{\pi }{2}} \right)\,{\text{is}}\,\frac{{\sqrt 3 x\cos \theta }}{9} + y.\sin \theta = 1 \cr & \therefore {\text{Intercept}}\,{\text{on}}\,x - {\text{axis}}\, = \frac{9}{{\sqrt 3 \cos \theta }}; \cr & {\text{Intercept}}\,{\text{on}}\,y - {\text{axis}} = \frac{1}{{\sin \theta }} \cr & \therefore {\text{Sum}}\,{\text{of}}\,{\text{intercepts}} = S = 3\sqrt 3 \sec \theta + \operatorname{cosec} \theta \cr & {\text{For}}\,{\text{min}}{\text{.}}\,{\text{value}}\,{\text{of}}\,S,\frac{{dS}}{{d\theta }} = 0 \cr & \Rightarrow 3\sqrt 3 \sec \theta \tan \theta - \operatorname{cosec} \theta \cot \theta = 0 \cr & \Rightarrow \frac{{3\sqrt 3 \sin \theta }}{{{{\cos }^2}\theta }} - \frac{{\cos \theta }}{{{{\sin }^2}\theta }} = 0 \Rightarrow 3\sqrt 3 {\sin ^3}\theta - {\cos ^3}\theta = 0 \cr & \Rightarrow {\tan ^3}\theta = \frac{1}{{3\sqrt 3 }} = {\left( {\frac{1}{{\sqrt 3 }}} \right)^3} \cr & \Rightarrow \tan \theta = \frac{1}{{\sqrt 3 }} = \tan \frac{\pi }{6} \Rightarrow \theta = \frac{\pi }{6} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section