Question

Suppose $${z_1},{z_2},{z_3}$$  are the vertices of an equilateral triangle inscribed in the circle $$\left| z \right| = 2.$$  If $${z_1} = 1 + \sqrt {3}i $$   and $${z_1},{z_2},{z_3}$$  are in the clockwise sense then

A. $${z_2} = 1 - \sqrt {3}i ,{z_3} = - 2$$  
B. $${z_2} = 2,{z_3} = 1 - \sqrt {3}i $$
C. $${z_2} = - 1 + \sqrt {3}i ,{z_3} = - 2$$
D. None of these
Answer :   $${z_2} = 1 - \sqrt {3}i ,{z_3} = - 2$$
Solution :
Complex Number mcq solution image
$$\eqalign{ & {\text{amp}}\,{z_1} = {\text{amp}}\left( {1 + \sqrt {3}i } \right) = {\tan ^{ - 1}}\sqrt 3 = \frac{\pi }{3}. \cr & {\text{amp}}\,{z_2} = \frac{\pi }{3} - \frac{{2\pi }}{3} = - \frac{\pi }{3}\,\,{\text{and }}\left| {{z_2}} \right| = 2 \cr & \therefore \,\,{z_2} = 2\left\{ {\cos \left( { - \frac{\pi }{3}} \right) + i\sin \left( { - \frac{\pi }{3}} \right)} \right\}. \cr & {\text{amp }}{z_3} = \frac{\pi }{3} + \frac{{2\pi }}{3} = \pi \,\,{\text{and }}\left| {{z_3}} \right| = 2 \cr & \therefore \,\,{z_3} = 2\left\{ {\cos \pi + i\sin \pi } \right\}. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section