Question
Suppose \[\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}}\\
{{a_2}}&{{b_2}}&{{c_2}}\\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right|\] and \[\Delta ' = \left| {\begin{array}{*{20}{c}}
{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\
{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\
{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}
\end{array}} \right|.\] Then
A.
$$\Delta ' = \Delta $$
B.
$$\Delta ' = \Delta \left( {1 - pqr} \right)$$
C.
$$\Delta ' = \Delta \left( {1 + p + q + r} \right)$$
D.
$$\Delta ' = \Delta \left( {1 + pqr} \right)$$
Answer :
$$\Delta ' = \Delta \left( {1 + pqr} \right)$$
Solution :
\[\Delta ' = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}}\\
{{a_2}}&{{b_2}}&{{c_2}}\\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{p{b_1}}&{q{c_1}}&{r{a_1}}\\
{p{b_2}}&{q{c_2}}&{r{a_2}}\\
{p{b_3}}&{q{c_3}}&{r{a_3}}
\end{array}} \right|\] [All other determinants vanish]
$$ = \Delta + pqr\Delta = \Delta \left( {1 + pqr} \right)$$