Question

Suppose $$a, b, c$$   are in A.P. and $${a^2},{b^2},{c^2}$$   are in G.P. If $$a < b < c$$   and $$a + b + c = \frac{3}{2},$$   then the value of $$a$$ is

A. $$\frac{1}{{2\sqrt 2 }}$$
B. $$\frac{1}{{2\sqrt 3 }}$$
C. $$\frac{1}{2} - \frac{1}{{\sqrt 3 }}$$
D. $$\frac{1}{2} - \frac{1}{{\sqrt 2 }}$$  
Answer :   $$\frac{1}{2} - \frac{1}{{\sqrt 2 }}$$
Solution :
$$\eqalign{ & {\text{Given that }}a,b,c{\text{ are in A}}{\text{.P}}{\text{.}} \cr & \Rightarrow \,\,{\text{2}}b = a + c \cr & \Rightarrow \,\,{\text{but given }}a + b + c = \frac{3}{2} \cr & \Rightarrow \,\,3b = \frac{3}{2} \cr & \Rightarrow \,\,b = \frac{1}{2}{\text{ and then }}a + c = 1 \cr & {\text{Again }}{a^2},{b^2},{c^2},{\text{ are in G}}{\text{.P}}{\text{.}} \cr & \Rightarrow \,\,{b^4} = {a^2}{c^2} \cr & \Rightarrow \,\,{b^2} = \pm ac \cr & \Rightarrow \,\,ac = \frac{1}{4}{\text{ or }} - \frac{1}{4}\,\,{\text{and }}a + c = 1\,\,\,\,\,.....\left( 1 \right) \cr & {\text{Considering }}a + c = 1{\text{ and }}ac = \frac{1}{4} \cr & \Rightarrow \,\,{\left( {a - c} \right)^2} = 1 - 1 = 0 \cr & \Rightarrow \,\,a = c{\text{ but }}a \ne c{\text{ as given that }}a < b < c \cr & \therefore \,\,{\text{ We consider }}a + c = 1{\text{ and }}ac = - \frac{1}{4} \cr & \Rightarrow \,\,{\left( {a - c} \right)^2} = 1 + 1 = 2 \cr & \Rightarrow \,\,a - c = \pm \sqrt 2 \,\,{\text{but }}a < c \cr & \Rightarrow \,\,a - c = - \sqrt 2 \,\,\,\,\,\,.....\left( 2 \right) \cr & {\text{Solving }}\left( 1 \right){\text{ and }}\left( 2 \right){\text{ we get }}a = \frac{1}{2} - \frac{1}{{\sqrt 2 }} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section