Question

$$\sum\limits_{k = 33}^{65} {\left( {\sin \frac{{2k\pi }}{8} - i\cos \frac{{2k\pi }}{8}} \right)} $$

A. $$1 + i$$
B. $$1 - i$$
C. $$1 + \frac{i}{{\sqrt 2 }}$$
D. $$ \frac{1 - i}{{\sqrt 2 }}$$  
Answer :   $$ \frac{1 - i}{{\sqrt 2 }}$$
Solution :
$$\eqalign{ & \sum\limits_{k = 33}^{65} {\left( {\sin \frac{{2k\pi }}{8} - i\cos \frac{{2k\pi }}{8}} \right)} \cr & = \left[ {\sin \frac{{33\pi }}{4} + \sin \frac{{34\pi }}{4} + ..... + \sin \frac{{65\pi }}{4}} \right] - i\left[ {\cos \frac{{33\pi }}{4} + \cos \frac{{34\pi }}{4} + .... + \cos \frac{{65\pi }}{4}} \right] \cr & = \sin \frac{\pi }{4} - i\cos \frac{\pi }{4}\sin \alpha + \sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha + 2\beta } \right) + ..... + \sin \left[ {\alpha + \left( {n - 1} \right)\beta } \right] \cr & = \frac{{\sin \left\{ {\alpha + \left( {n - 1} \right)\frac{\beta }{2}} \right\} \cdot \sin \frac{{n\beta }}{2}}}{{\sin \frac{\beta }{2}}} \cr & {\text{and }}\cos \left( \alpha \right) + \cos \left( {\alpha + \beta } \right) + ..... + \cos \left( {\alpha + \left( {n - 1} \right)\beta } \right) \cr & = \frac{{\cos \left\{ {\alpha + \left( {n - 1} \right)\frac{\beta }{2}} \right\} \cdot \sin \left( {\frac{{n\beta }}{2}} \right)}}{{\sin \frac{\beta }{2}}} \cr & = - \left( {\frac{{1 + i}}{{\sqrt 2 }}} \right) = \frac{{1 - i}}{{\sqrt 2 }} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section