Question

Sum of the first $$n$$ terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......$$      is equal to

A. $${2^n} - n - 1$$
B. $$1 - {2^{ - n}}$$
C. $$n + {2^{ - n}} - 1$$  
D. $${2^n} + 1$$
Answer :   $$n + {2^{ - n}} - 1$$
Solution :
$$\eqalign{ & {\text{Let }}S = \frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ......n{\text{ terms}} \cr & {\text{ = }}\left( {1 - \frac{1}{2}} \right) + \left( {1 - \frac{1}{4}} \right) + \left( {1 - \frac{1}{8}} \right) + \left( {1 - \frac{1}{{16}}} \right).....n\,{\text{terms}} \cr & {\text{ = }}\left( {1 + 1 + 1 + .....n{\text{ terms}}} \right) - \left( {\frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{2^4}}} + .... + \frac{1}{{{2^n}}}} \right) \cr & = n - \left[ {\frac{{\frac{1}{2}\left( {1 - \frac{1}{{{2^n}}}} \right)}}{{1 - \frac{1}{2}}}} \right] \cr & = n - 1 + {2^{ - n}} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section