Question

Sum of $$n$$ terms of series $$12 + 16 + 24 + 40 + . . . . .$$     will be

A. $$2\left( {{2^n} - 1} \right) + 8n$$
B. $$2\left( {{2^n} - 1} \right) + 6n$$
C. $$3\left( {{2^n} - 1} \right) + 8n$$
D. $$4\left( {{2^n} - 1} \right) + 8n$$  
Answer :   $$4\left( {{2^n} - 1} \right) + 8n$$
Solution :
Let $$n^{th}$$ term of series is $$T_n$$ then
$$\eqalign{ & {S_n} = 12 + 16 + 24 + 40 + .... + {T_n} \cr & {\text{Again }}\,{S_n} = 12 + 16 + 24 + .... + {T_n} \cr} $$
On subtraction
$$\eqalign{ & 0 = \left( {12 + 4 + 8 + 16 + .... + \,{\text{upto }}n{\text{ terms}}} \right) - {T_n} \cr & {\text{or }}{T_n} = 12 + \left[ {4 + 8 + 16 + .... + \,{\text{upto}}\left( {n - 1} \right){\text{terms}}} \right] \cr & = 12 + \frac{{4\left( {{2^{n + 1}} - 1} \right)}}{{2 - 1}} = {2^{n - 1}} + 8 \cr} $$
On putting $$n = 1, 2, 3 ....$$
$$\eqalign{ & {T_1} = {2^2} + 8,{T_2} = {2^3} + 8,{T_3} = {2^4} + 8.....\,{\text{etc}}{\text{.}} \cr & {S_n} = {T_1} + {T_2} + {T_3} + .... + {T_n} \cr & = \left( {{2^2} + {2^3} + {2^4} + ....\,{\text{upto }}n{\text{ terms}}} \right) + \left( {8 + 8 + 8 + ....\,{\text{upto }}n{\text{ terms}}} \right) \cr & = \frac{{{2^2}\left( {{2^n} - 1} \right)}}{{2 - 1}} + 8n = 4\left( {{2^n} - 1} \right) + 8n. \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section