Question

Solution of the differential equation $$ydx + \left( {x + {x^2}y} \right)dy = 0$$     is-

A. $$\log \,y = Cx$$
B. $$ - \frac{1}{{xy}} + \log \,y = C$$  
C. $$\frac{1}{{xy}} + \log \,y = C$$
D. $$ - \frac{1}{{xy}} = C$$
Answer :   $$ - \frac{1}{{xy}} + \log \,y = C$$
Solution :
$$\eqalign{ & ydx + \left( {x + {x^2}y} \right)dy = 0 \cr & \Rightarrow \frac{{dx}}{{dy}} = - \frac{x}{y} - {x^2}\,\,\,\, \Rightarrow \frac{{dx}}{{dy}} + \frac{x}{y} = - {x^2} \cr} $$
It is Bernoullis form. Divide by $${x^2}$$
$$\eqalign{ & {x^{ - 2}}\frac{{dx}}{{dy}} + {x^{ - \,1}}\left( {\frac{1}{y}} \right) = - 1 \cr & {\text{Put }}{x^{ - \,1}} = t,\,\, - {x^{ - \,2}}\frac{{dx}}{{dy}} = \frac{{dt}}{{dy}} \cr & {\text{We get,}} \cr & - \frac{{dt}}{{dy}} + t\left( {\frac{1}{y}} \right) = - 1\,\,\,\,\,\, \Rightarrow \frac{{dt}}{{dy}} - \left( {\frac{1}{y}} \right)t = 1 \cr} $$
It is linear in $$t.$$
Integrating factor $$ = {e^{\int { - \,\frac{1}{y}dy} }} = {e^{ - \,\log \,y}} = {y^{ - 1}}$$
$$\therefore $$ Solution is $$t\left( {{y^{ - \,1}}} \right) = \int {\left( {{y^{ - \,1}}} \right)} dy + c$$
$$ \Rightarrow \frac{1}{x}.\frac{1}{y} = \log \,y + c \Rightarrow \log \,y - \frac{1}{{xy}} = c$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section