Question

Solution of the differential equation $$\frac{{dx}}{{dy}} - \frac{{x\,\log x}}{{1 + \log \,x}} = \frac{{{e^y}}}{{1 + \log \,x}},{\text{ if }}y\left( 1 \right) = 0,{\text{ is :}}$$

A. $${x^x} = {e^{y{e^y}}}$$  
B. $${e^y} = {x^{{e^y}}}$$
C. $${x^x} = y{e^y}$$
D. none of these
Answer :   $${x^x} = {e^{y{e^y}}}$$
Solution :
$$\eqalign{ & \left( {1 + \log \,x} \right)\frac{{dx}}{{dy}} - x\,\log \,x = {e^y} \cr & {\text{putting }}x\,\log \,x = t \Rightarrow \left( {1 + \log \,x} \right)dx = dt \cr & \therefore \,\frac{{dt}}{{dy}} - t = {e^y}\,\,\,\,\,{\text{Now, I}}{\text{.F}}{\text{.}} = {e^{\int { - 1\,dy} }} = {e^{ - y}} \cr & \Rightarrow t{e^{ - y}} = \int {{e^{ - y}}{e^y}dy + C} \cr & \Rightarrow t = C{e^y} + y{e^y} \cr & \Rightarrow x\,\log \,x = \left( {C + y} \right){e^y}, \cr & {\text{Since, }}y\left( 1 \right) = 0,\,{\text{then}} \cr & 0 = \left( {C + 0} \right)1 \Rightarrow C = 0 \cr & \therefore \,y{e^y} = x\,\log \,x \Rightarrow {x^x} = {e^{y{e^y}}} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section