Question

Slope of a line passing through $$P\left( {2,\,3} \right)$$   and intersecting the line $$x+y=7$$   at a distance of 4 units from $$P,$$  is :

A. $$\frac{{1 - \sqrt 5 }}{{1 + \sqrt 5 }}$$
B. $$\frac{{1 - \sqrt 7 }}{{1 + \sqrt 7 }}$$  
C. $$\frac{{\sqrt 7 - 1}}{{\sqrt 7 + 1}}$$
D. $$\frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}$$
Answer :   $$\frac{{1 - \sqrt 7 }}{{1 + \sqrt 7 }}$$
Solution :
Straight Lines mcq solution image
Since point at 4 units from $$P\left( {2,\,3} \right)$$   will be $$A\left( {4\,\cos \,\theta + 2,\,4\,\sin \,\theta + 3} \right)$$       and this point will satisfy the equation of line $$x+y=7$$
$$ \Rightarrow \cos \,\theta + \sin \,\theta = \frac{1}{2}$$
On squaring
$$\eqalign{ & \Rightarrow \sin \,2\theta - \frac{3}{4} \Rightarrow \frac{{2\,\tan \,\theta }}{{1 + {{\tan }^2}\theta }} = - \frac{3}{4} \cr & \Rightarrow 3\,{\tan ^2}\theta + 8\,\tan \,\theta + 3 = 0 \cr & \Rightarrow \tan \,\theta = \frac{{ - 8 \pm 2\sqrt 7 }}{6}\,\,\,\,\,\,\left( {{\text{ignoring }} - {\text{ve sign}}} \right) \cr & \Rightarrow \tan \,\theta = \frac{{ - 8 + 2\sqrt 7 }}{6} \cr & \Rightarrow \tan \,\theta = \frac{{1 - \sqrt 7 }}{{1 + \sqrt 7 }} \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section