Question

Ratio in which the $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$   and $$\left( {4,\,2,\,1} \right).$$

A. $$1 : 1$$  internally
B. $$1 : 1$$  externally  
C. $$2 : 1$$  internally
D. $$2 : 1$$  externally
Answer :   $$1 : 1$$  externally
Solution :
Suppose $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$   and $$\left( {4,\,2,\,1} \right)$$   in the ratio $$\lambda :1.$$
Then, the co-ordinates of the point of division are
$$\left( {\frac{{4\lambda + 1}}{{\lambda + 1}},\,\frac{{2\lambda + 2}}{{\lambda + 1}},\,\frac{{\lambda + 3}}{{\lambda + 1}}} \right)$$
This point lies on $$zx$$ -plane. $$\therefore \,y$$ -coordinate $$ = 0 \Rightarrow \frac{{2\lambda + 2}}{{\lambda + 1}} = 0 \Rightarrow \lambda = - 1$$
Hence, $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$   and $$\left( {4,\,2,\,1} \right)$$   externally in the ratio $$1 : 1.$$
Alternate solution :
We know that the $$zx$$ -plane divides the segment joining $$P\left( {{x_1},\,{y_1},\,{z_1}} \right)$$   and $$Q\left( {{x_2},\,{y_2},\,{z_2}} \right)$$   in the ratio $$ - {y_1}:{y_2}.$$
$$\therefore \,zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$   and $$\left( {4,\,2,\,1} \right)$$   in the ratio $$ - 2:2{\text{ i}}{\text{.e}}{\text{., }}1:1$$   externally.

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section