Question

$$P$$ is a variable point on the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 2$$    whose foci are $${F_1}$$ and $${F_2}.$$ The maximum area $$\left( {{\text{in uni}}{{\text{t}}^2}} \right)$$   of the $$\Delta PFF'$$   is :

A. $$2b\sqrt {{a^2} - {b^2}} $$  
B. $$\sqrt 2 b\sqrt {{a^2} - {b^2}} $$
C. $$b\sqrt {{a^2} - {b^2}} $$
D. $$2a\sqrt {{a^2} - {b^2}} $$
Answer :   $$2b\sqrt {{a^2} - {b^2}} $$
Solution :
Let $$P = \left( {\sqrt 2 a\cos \,\phi ,\,\sqrt 2 b\sin \,\phi } \right).\,{F_1}{\text{ and }}{F_2} = \left( { \pm \sqrt 2 ae,\,0} \right)$$
\[\begin{array}{l} {\rm{The \,area\, of\, }}\Delta PFF' = \left| {\frac{1}{2}\left| \begin{array}{l} \sqrt 2 a\cos \,\phi \,\,\,\,\,\sqrt 2 b\sin \,\phi \,\,\,\,\,\,\,\,\,\,\,\,1\\ \,\,\,\,\,\,\,\,\sqrt 2 ae\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ \,\,\, - \sqrt 2 ae\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \end{array} \right|} \right|\\ = \frac{1}{2}.\sqrt 2 b\sin \,\phi .\sqrt 2 ae\\ = 2abe\sin \,\phi \end{array}\]
$$\therefore $$  maximum area $$ = 2abc = 2ab.\frac{{\sqrt {{a^2} + {b^2}} }}{a}$$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section