Question

$$P\left( {a,\,b,\,c} \right);\,Q\left( {a + 2,\,b + 2,\,c - 2} \right)$$       and $$R\left( {a + 6,\,b + 6,\,c - 6} \right)$$     are collinear.
Consider the following statements :
1. $$R$$ divides $$PQ$$  internally in the ratio $$3 : 2$$
2. $$R$$ divides $$PQ$$  externally in the ratio $$3 : 2$$
3. $$Q$$ divides $$PR$$  internally in the ratio $$1 : 2$$
Which of the statements given above is/are correct ?

A. 1 only
B. 2 only
C. 1 and 3
D. 2 and 3  
Answer :   2 and 3
Solution :
Given that $$P\left( {a,\,b,\,c} \right);\,Q\left( {a + 2,\,b + 2,\,c - 2} \right)$$       and $$R\left( {a + 6,\,b + 6,\,c - 6} \right)$$     are collinear, one point must divide, the other two points externally or internally.
Let $$R$$ divide $$P$$ and $$Q$$ in ratio $$k : 1$$
So, taking on $$x$$-co-ordinates
$$\eqalign{ & \frac{{k\left( {a + 2} \right) + a}}{{k + 1}} = a + 6 \cr & \Rightarrow k\left( {a + 2} \right) + a = \left( {k + 1} \right)\left( {a + 6} \right) \cr & \Rightarrow ka + 2k + a = ka + 6k + a + 6 \cr & \Rightarrow - 4k = 6{\text{ or }}k = - \frac{3}{2} \cr} $$
Negative sign shows that this is external division in ratio $$3 : 2.$$
So, $$R$$ is divided $$P$$ and $$Q$$ externally in $$3 : 2$$  ratio.
Putting this value for $$y$$ - and $$z$$ - coordinates satisfied :
for $$y$$ - co-rdinate :
$$\frac{{3\left( {b + 2} \right) - 2b}}{{3 - 2}} = \frac{{3b + 6 - 2b}}{1} = b + 6$$
and for $$z$$-co-rdinate :
$$\frac{{3\left( {c - 2} \right) - 2c}}{{3 - 2}} = \frac{{3c - 6 - 2c}}{1} = c - b$$
Statement $$\left( 2 \right)$$ is correct.
Also, let $$Q$$ divide $$P$$ and $$R$$ in ratio $$P : 1$$
Taking an $$x$$-co-ordinate :
$$\eqalign{ & \frac{{p\left( {a + 6} \right) + a}}{{p + 1}} = a + 2 \cr & \Rightarrow \frac{{p.a + 6p + a}}{{p + 1}} = a + 2 \cr & \Rightarrow pa + 6p + a = pa + a + 2p + 2 \cr & \Rightarrow 4p = 2 \cr & \Rightarrow p = \frac{1}{2} \cr} $$
Positive sign shows but the division is internal and in the ratio $$1 : 2$$
Verifying for $$y$$-and $$z$$-co-ordinates, satisfies this results.
For $$y$$- co-ordinate,
$$\frac{{\left( {b + 6} \right) \times 1 + 2b}}{3} = \frac{{3b + 6}}{3} = b + 2$$
and for $$z$$-co-ordinate,
$$\frac{{c - 6 + 2c}}{3} = \frac{{3c - 6}}{3} = c - 2$$
values are satisfied. So, statement $$\left( 3 \right)$$ is correct.

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section