Question

On the interval [0, 1] the function $${x^{25}}{\left( {1 - x} \right)^{75}}$$   takes its maximum value at the point

A. 0
B. $$\frac{1}{4}$$  
C. $$\frac{1}{2}$$
D. $$\frac{1}{3}$$
Answer :   $$\frac{1}{4}$$
Solution :
$$\eqalign{ & {\text{Let}}\,y = {x^{25}}{\left( {1 - x} \right)^{75}} \Rightarrow \frac{{dy}}{{dx}} = 25{x^{24}}{\left( {1 - x} \right)^{75}} - 75{x^{25}}{\left( {1 - x} \right)^{74}} \cr & = 25{x^{24}}{\left( {1 - x} \right)^{74}}\left( {1 - x - 3x} \right) = 25{x^{24}}{\left( {1 - x} \right)^{74}}\left( {1 - 4x} \right) \cr & {\text{For}}\,{\text{maximum}}\,{\text{value}}\,{\text{of}}\,y,\frac{{dy}}{{dx}} = 0 \cr & \Rightarrow \quad x = 0,1,\frac{1}{4},x = \frac{1}{4} \in \left( {0,1} \right) \cr & {\text{Also}}\,{\text{at}}\,x = 0,y = 0,\,{\text{at}}\,x = 1,y = 0,\,{\text{and}}\,{\text{at}}\,x = \frac{1}{4},y > 0 \cr & \therefore {\text{Max}}{\text{.}}\,{\text{value}}\,{\text{of}}\,y\,{\text{occurs}}\,{\text{at}}\,x = \frac{1}{4} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section