Question

Number of values of $$x$$ which lie in $$\left[ {0,2\pi } \right]$$  and satisfy the equation $$\left( {\cos \frac{x}{4} - 2\sin x} \right)\sin x + \left( {1 + \sin \frac{x}{4} - 2\cos x} \right)\cos x = 0$$

A. 1  
B. 2
C. 3
D. 4
Answer :   1
Solution :
$$\eqalign{ & \left( {\cos \frac{x}{4} - 2\sin x} \right)\sin x + \left( {1 + \sin \frac{x}{4} - 2\cos x} \right)\cos x = 0 \cr & \Rightarrow \left( {\sin x\cos \frac{x}{4} + \cos x\sin \frac{x}{4}} \right) + \cos x - 2\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 0 \cr & \Rightarrow \sin \left( {x + \frac{x}{4}} \right) + \cos x - 2\left( 1 \right) = 0 \cr & \Rightarrow \sin \frac{{5x}}{4} + \cos x = 2 \cr & \Rightarrow \sin \frac{{5x}}{4} = \cos x = 1 \cr & \Rightarrow \sin \frac{{5x}}{4} = 1 \cr & \Rightarrow \frac{{5x}}{4} = 2n\pi + \frac{\pi }{2} \cr & \Rightarrow x = \frac{{8n\pi }}{5} + \frac{{2\pi }}{5}\,\,\& \,\,\cos x = 1 \cr & \Rightarrow x = 2m\pi \cr & {\text{Thus we have, }}\frac{{8n\pi }}{5} + \frac{{2\pi }}{5} = 2m\pi \cr & \Rightarrow m = \frac{{4n + 1}}{5} \cr} $$
$$\therefore n \in I,$$   so $$m$$ must be of the form $$m = 5k + 1$$
Hence, the solution of the equation is
$$x = 2\left( {5k + 1} \right)\pi ,k \in I$$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section