Question
Non-real complex numbers $$z$$ satisfying the equation $${z^3} + 2{z^2} + 3z + 2 = 0$$ are
A.
$$\frac{{ - 1 \pm \sqrt { - 7} }}{2}$$
B.
$$\frac{{1 + \sqrt {7}i }}{2},\frac{{1 - \sqrt {7}i }}{2}$$
C.
$$ - i,\frac{{ - 1 + \sqrt {7}i }}{2},\frac{{ - 1 - \sqrt {7}i }}{2}$$
D.
None of these
Answer :
$$\frac{{ - 1 \pm \sqrt { - 7} }}{2}$$
Solution :
$$\left( {z + 1} \right)\left( {{z^2} + z + 2} \right) = 0;$$ non-real complex roots are found from $${{z^2} + z + 2 = 0}.$$