Question

$$\mathop {{\text{Lim}}}\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}},$$     where $$k \ne 0$$  is a constant and $$n\, \in \,{\bf{N}}$$  is equal to :

A. $$ke$$
B. $${k^{ - 1}}e$$
C. $$k{e^{ - 1}}$$
D. $${k^{ - 1}}{e^{ - 1}}$$  
Answer :   $${k^{ - 1}}{e^{ - 1}}$$
Solution :
Let $$P = \mathop {{\text{Lim}}}\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}}$$
Taking $$\log $$  of both the sides at the base $$e$$
$$\eqalign{ & {\log _e}P = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}{\log _e}\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\} \cr & = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}{\log _e}\left\{ {\frac{1}{{kn}}.\frac{2}{{kn}}.\frac{3}{{kn}}......\frac{n}{{kn}}} \right\} \cr & = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}\left[ {\log \left( {\frac{1}{{kn}}} \right) + \log \left( {\frac{2}{{kn}}} \right) + ...... + \log \left( {\frac{n}{{kn}}} \right)} \right] \cr & = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}\sum\limits_{r = 1}^n {\log \left( {\frac{r}{{kn}}} \right)} \cr & = \int\limits_0^1 {\log } \left( {\frac{x}{k}} \right)dx \cr & = \int\limits_0^1 {\left( {\log \,x - \log \,k} \right)dx} \cr & = \int\limits_0^1 {\log } \,x\,dx - \int\limits_0^1 {\log \,k\,dx} \cr & = \left[ {x\,\log \,x - x} \right]_0^1 - \log \,k\left[ x \right]_0^1 \cr & = \left[ {0 - 1 - 0 + 0} \right] - \log \,k \cr & = - 1 - \log \,k \cr & = - \left( {\log \,e + \log \,k} \right) \cr & = - \log \left( {ek} \right) \cr & = \log \frac{1}{{ek}} \cr & \left[ {{\text{Value of}}\,x\,\log \,x\,{\text{at}}\,x = 0\,{\text{is}}\,\mathop {{\text{Lim}}}\limits_{x \to {0^ + }} x\,\log \,x = 0} \right] \cr & \therefore \,P = \frac{1}{{ek}} = {k^{ - 1}}{e^{ - 1}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section