Question

$$\mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{\sqrt {{n^2} + {r^2}} }}} $$     equals:

A. $$1 + \sqrt 5 $$
B. $$ - 1 + \sqrt 5 $$  
C. $$ - 1 + \sqrt 2 $$
D. $$1 + \sqrt 2 $$
Answer :   $$ - 1 + \sqrt 5 $$
Solution :
$$\eqalign{ & {\text{We have}} = \mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{\sqrt {{n^2} + {r^2}} }}} \cr & = \mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{n}\sum\limits_{r\, = \,1}^{2n} {\frac{r}{{n\sqrt {1 + {{\left( {\frac{r}{n}} \right)}^2}} }}} \cr & = \int_0^2 {\frac{x}{{\sqrt {1 + {x^2}} }}dx} \,\,\,\left[ {\because \mathop {\lim }\limits_{n\, \to \,\infty } \frac{1}{r}\sum\limits_{r\, = \,0}^{{a_n}} {f\left( {\frac{r}{n}} \right) = \int\limits_0^a {f\left( x \right)dx} } } \right] \cr & = \left[ {\sqrt {1 + {x^2}} } \right]_0^2 = \sqrt 5 - 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section