161.
If three points $$\left( {h,\,0} \right),\,\left( {a,\,b} \right)$$ and $$\left( {0,\,k} \right)$$ lies on a line, then the value of $$\frac{a}{h} + \frac{b}{k}$$ is :
The given points are $$A\left( {h,\,0} \right),\,B\left( {a,\,b} \right),\,C\left( {0,\,k} \right),$$ they lie on the same plane.
$$\therefore $$ Slope of $$AB =$$ Slope of $$BC$$
$$\therefore $$ Slope of $$AB = \frac{{b - 0}}{{a - h}} = \frac{b}{{a - h}}\,;$$
Slope of $$BC = \frac{{k - b}}{{0 - a}} = \frac{{k - b}}{{ - a}}$$
$$\eqalign{
& \therefore \,\frac{b}{{a - h}} = \frac{{k - b}}{{ - a}}\,{\text{ by cross multiplication}} \cr
& {\text{or }} - ab = \left( {a - h} \right)\left( {k - b} \right) \cr
& {\text{or }} - ab = ak - ab - hk + hb \cr
& {\text{or }}0 = ak - hk + hb \cr
& {\text{or }}ak + hb = hk \cr
& {\text{Dividing by }}hk \Rightarrow \frac{{ak}}{{hk}} + \frac{{hb}}{{hk}} = 1{\text{ or }}\frac{a}{h} + \frac{b}{k} = 1 \cr} $$
162.
From the point $$\left( {4,\,3} \right)$$ a perpendicular is dropped on the $$x$$-axis as well as on the $$y$$-axis. If the lengths of perpendiculars are $$p,\,q$$ respectively, then which one of the following is correct ?
163.
Let $$\left( {h,\,k} \right)$$ be a fixed point where $$h > 0,\,k > 0.$$ A straight line passing through this point cuts the positive direction of the coordinate axes at the points $$P$$ and $$Q.$$ Then the minimum area of the $$\Delta OPQ.\,O$$ being the origin, is :
Let the equation of any line passing through $$A\left( {h,\,k} \right){\text{ be }}y - k = m\left( {x - h} \right).$$
Let this line cut the $$x$$-axis and $$y$$-axis at $$P$$ and $$Q.$$
Then $$P \equiv \left( {h - \frac{k}{m},\,0} \right){\text{ and }}Q \equiv \left( {0,\,k - mh} \right).$$
Let $$S$$ be the area of $$\Delta OPQ,$$ then
$$\eqalign{
& S = \frac{1}{2}OP \times OQ \cr
& \Rightarrow S = \frac{1}{2}\left( {h - \frac{k}{m}} \right)\left( {k - mh} \right) \cr
& \Rightarrow S = \frac{1}{2}\frac{{\left( {mh - k} \right)\left( {k - mh} \right)}}{m} \cr
& \Rightarrow 2mS = hkm - {k^2} - {h^2}{m^2} + khm \cr
& \Rightarrow {h^2}{m^2} - 2\left( {hk - S} \right)m + {k^2} = 0 \cr} $$
Since, $$m$$ is real,
$$\therefore $$ its discriminant $$D \geqslant 0$$
$$\eqalign{
& \therefore \,4{\left( {hk - S} \right)^2} - 4{h^2}{k^2} \geqslant 0 \cr
& \Rightarrow S - 2hk \geqslant 0 \cr
& \Rightarrow S \geqslant 2hk \cr} $$
Hence, minimum value of $$S$$ is $$2hk$$ square units.
164.
$$L$$ is a variable line such that the algebraic sum of the distances of the points $$\left( {1,\,1} \right),\,\left( {2,\,0} \right)$$ and $$\left( {0,\,2} \right)$$ from the line is equal to zero. The line $$L$$ will always pass through :
Let the line be $$y=mx+c$$ or $$mx-y+c=0.$$
The algebraic sum of the distances $$ = \frac{{m - 1 + c}}{{\sqrt {1 + {m^2}} }} + \frac{{2m + c}}{{\sqrt {1 + {m^2}} }} + \frac{{ - 2 + c}}{{\sqrt {1 + {m^2}} }} = 0$$
$$ \Rightarrow 3m + 3c = 3\,\,{\text{or }}1 = m + c$$
So, $$\left( {1,\,1} \right)$$ satisfies $$y=mx+c$$ for all $$m,\,c.$$
165.
Locus of mid point of the portion between the axes of $$x\,\cos \,\alpha + y\,\sin \,\alpha = p$$ where $$p$$ is constant is-
A
$${x^2} + {y^2} = \frac{4}{{{p^2}}}$$
B
$${x^2} + {y^2} = 4{p^2}$$
C
$$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{2}{{{p^2}}}$$
D
$$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$
166.
If $${p_1},\,{p_2}$$ are the lengths of the normals drawn from the origin on the lines $$x\,\cos \,\theta + y\,\sin \,\theta = 2a\,\cos \,4\theta $$ and $$x\,\sec \,\theta + y\,{\text{cosec }}\theta = 4a\,\cos \,2\theta $$ and respectively, and $$mp_1^2 + np_2^2 = 4{a^2}.$$ Then :
167.
Let $$A = \left( {1,\,0} \right)$$ and $$B = \left( {2,\,1} \right).$$ The line $$AB$$ turns about $$A$$ through an angle $$\frac{\pi }{6}$$ in the clockwise sense, and the new position of $$B$$ is $$B'.$$ Then $$B'$$ has the coordinates :
If none of the coordinates are irrational then
\[\Delta = \frac{1}{2}\left| \begin{array}{l}
{x_1}\,\,\,\,\,{y_1}\,\,\,\,\,1\\
{x_2}\,\,\,\,\,{y_2}\,\,\,\,\,1\\
{x_3}\,\,\,\,\,{y_3}\,\,\,\,\,1
\end{array} \right| = \frac{1}{2} \times {\rm{rational}} = {\rm{rational}}\]
But the area of an equilateral triangle
$$ = \frac{{\sqrt 3 }}{4} \times {\left( {{\text{side}}} \right)^2} = \frac{{\sqrt 3 }}{4} \times {\text{rational}} = {\text{irrational}}$$
So, both the coordinates of the third vertex cannot be rational.
169.
If the points $$\left( { - 2,\,0} \right),\,\left( { - 1,\,\frac{1}{{\sqrt 3 }}} \right)$$ and $$\left( {\cos \,\theta ,\,\sin \,\theta } \right)$$ are collinear then the number of values of $$\theta \, \in \left[ {0,\,2\pi } \right]$$ is :
Suppose $$B$$ (0, 1) be any point on given line and co-ordinate of $$A$$ is $$\left( {\sqrt 3 ,\,0} \right).$$ So, equation of
Reflected Ray is $$\frac{{ - 1 - 0}}{{0 - \sqrt 3 }} = \frac{{y - 0}}{{x - \sqrt 3 }}$$
$$ \Rightarrow \sqrt 3 y = x - \sqrt 3 $$