21. For a positive integer $$n,$$ Let $$a\left( n \right) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ..... + \frac{1}{{\left( {{2^n}} \right) - 1}}.$$        Then

A $$a\left( {100} \right) \leqslant 100$$
B $$a\left( {100} \right) > 100$$
C $$a\left( {200} \right) \leqslant 100$$
D $$a\left( {200} \right) < 100$$
Answer :   $$a\left( {100} \right) \leqslant 100$$
Discuss Question

22. If $$n \in N$$  and $$n > 1,$$  then

A $$n! > {\left( {\frac{{n + 1}}{2}} \right)^n}$$
B $$n! \geqslant {\left( {\frac{{n + 1}}{2}} \right)^n}$$
C $$n! < {\left( {\frac{{n + 1}}{2}} \right)^n}$$
D None of these
Answer :   $$n! < {\left( {\frac{{n + 1}}{2}} \right)^n}$$
Discuss Question

23. For all $$n \in N,1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{1}{{1 + 2 + 3 + ..... + n}}$$            is equal to

A $$\frac{{3n}}{{n + 1}}$$
B $$\frac{{n}}{{n + 1}}$$
C $$\frac{{2n}}{{n - 1}}$$
D $$\frac{{2n}}{{n + 1}}$$
Answer :   $$\frac{{2n}}{{n + 1}}$$
Discuss Question

24. Let $$P\left( n \right):$$  "$${2^n} < \left( {1 \times 2 \times 3 \times ..... \times n} \right)$$     ". Then the smallest positive integer for which $$P\left( n \right)$$  is true is

A 1
B 2
C 3
D 4
Answer :   4
Discuss Question

25. If $$P\left( n \right):{3^n} < n!,n \in N,$$     then $$P\left( n \right)$$  is true

A for $$n \geqslant 6$$
B for $$n \geqslant 7$$
C for $$n \geqslant 3$$
D for all $$n$$
Answer :   for $$n \geqslant 7$$
Discuss Question

26. When $$2^{301}$$ is divided by 5, the least positive remainder is

A 4
B 8
C 2
D 6
Answer :   2
Discuss Question

27. Which one of the following is true ?

A $${\left( {1 + \frac{1}{n}} \right)^n} < {n^2},n$$    is a positive integer
B $${\left( {1 + \frac{1}{n}} \right)^n} < {2},n$$    is a positive integer
C $${\left( {1 + \frac{1}{n}} \right)^n} < {n^3},n$$    is a positive integer
D $${\left( {1 + \frac{1}{n}} \right)^n} > {2},n$$    is a positive integer
Answer :   $${\left( {1 + \frac{1}{n}} \right)^n} > {2},n$$    is a positive integer
Discuss Question

28. For given series : $${1^2} + 2 \times {2^2} + {3^2} + 2 \times {4^2} + {5^2} + 2 \times {6^2} + .....,$$         if $$S_n$$ is the sum of $$n$$ terms, then

A $${S_n} = \frac{{n{{\left( {n + 1} \right)}^2}}}{2},\,$$   if $$n$$ is even
B $${S_n} = \frac{{{n^2}\left( {n + 1} \right)}}{2},\,$$   if $$n$$ is odd
C Both $$\left( a \right)$$ and $$\left( b \right)$$ are true
D Both $$\left( a \right)$$ and $$\left( b \right)$$ are false
Answer :   Both $$\left( a \right)$$ and $$\left( b \right)$$ are true
Discuss Question

29. For every positive integral value of $$n, 3^n > n^3$$   when

A $$n > 2$$
B $$n \geqslant 3$$
C $$n \geqslant 4$$
D $$n < 4$$
Answer :   $$n \geqslant 4$$
Discuss Question

30. Let $$S\left( k \right) = 1 + 3 + 5 + ...... + \left( {2k - 1} \right) = 3 + {k^2}.$$          Then which of the following is true

A Principle of mathematical induction can be used to prove the formula
B $$S\left( k \right) \Rightarrow S\left( {k + 1} \right)$$
C $$S\left( k \right) ⇏ S\left( {k + 1} \right)$$
D $$S(1)$$  is correct
Answer :   $$S\left( k \right) \Rightarrow S\left( {k + 1} \right)$$
Discuss Question


Practice More MCQ Question on Maths Section