It can be proved with the help of mathematical induction that $$\frac{n}{2} > a\left( n \right) \leqslant n.$$
$$\eqalign{
& \therefore \frac{{200}}{2} < a\left( {200} \right) \cr
& \Rightarrow a\left( {200} \right) > 100{\text{ and }}a\left( {100} \right) \leqslant 100. \cr} $$
22.
If $$n \in N$$ and $$n > 1,$$ then
A
$$n! > {\left( {\frac{{n + 1}}{2}} \right)^n}$$
B
$$n! \geqslant {\left( {\frac{{n + 1}}{2}} \right)^n}$$
Let the statement $$P\left( n \right)$$ be defined as
$$\eqalign{
& P\left( n \right):1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{1}{{1 + 2 + 3 + ..... + n}} = \frac{{2n}}{{n + 1}} \cr
& {\text{i}}{\text{.e}}{\text{., }}P\left( n \right):1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{2}{{n\left( {n + 1} \right)}} = \frac{{2n}}{{n + 1}} \cr} $$ Step I : For $$n = 1,P\left( 1 \right):1 = \frac{{2 \times 1}}{{1 + 1}} = \frac{2}{2} = 1,$$
which is true. Step II : Let it is true for $$n = k,$$ i.e., $$1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{2}{{k\left( {k + 1} \right)}} = \frac{{2k}}{{k + 1}}\,\,\,.....\left( {\text{i}} \right)$$ Step III : For $$n = k + 1,\left( {1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{2}{{k\left( {k + 1} \right)}}} \right) + \frac{2}{{\left( {k + 1} \right)\left( {k + 2} \right)}}$$
$$ = \frac{{2k}}{{k + 1}} + \frac{2}{{\left( {k + 1} \right)\left( {k + 2} \right)}}$$ [using equation (i)]
$$ = \frac{{2k\left( {k + 2} \right) + 2}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{{2\left[ {{k^2} + 2k + 1} \right]}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}$$ [taking 2 common in numerator part]
$$ = \frac{{2{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{{2\left( {k + 1} \right)}}{{k + 2}} = \frac{{2\left( {k + 1} \right)}}{{\left( {k + 1} \right) + 1}}$$
Therefore, $$P\left( {k + 1} \right)$$ is true, when $$P\left( {k} \right)$$ is true.
Hence, from the principle of mathematical induction, the statement is true for all natural numbers $$n.$$
24.
Let $$P\left( n \right):$$ "$${2^n} < \left( {1 \times 2 \times 3 \times ..... \times n} \right)$$ ". Then the smallest positive integer for which $$P\left( n \right)$$ is true is
28.
For given series : $${1^2} + 2 \times {2^2} + {3^2} + 2 \times {4^2} + {5^2} + 2 \times {6^2} + .....,$$ if $$S_n$$ is the sum of $$n$$ terms, then
A
$${S_n} = \frac{{n{{\left( {n + 1} \right)}^2}}}{2},\,$$ if $$n$$ is even
B
$${S_n} = \frac{{{n^2}\left( {n + 1} \right)}}{2},\,$$ if $$n$$ is odd
C
Both $$\left( a \right)$$ and $$\left( b \right)$$ are true
D
Both $$\left( a \right)$$ and $$\left( b \right)$$ are false
Answer :
Both $$\left( a \right)$$ and $$\left( b \right)$$ are true