Question

$${L_r},\,{m_r},\,{n_r};\,r = 1,\,2,\,3;$$     are the direction cosines of three mutually perpendicular lines. The direction cosines of the line equally inclined to them are :

A. $${l_1} + {l_2} + {l_3},\,{m_1} + {m_2} + {m_3},\,{n_1} + {n_2} + {n_3}$$
B. $$\frac{{{l_1} + {l_2} + {l_3}}}{3},\,\frac{{{m_1} + {m_2} + {m_3}}}{3},\,\frac{{{n_1} + {n_2} + {n_3}}}{3}$$
C. $$\frac{1}{{\sqrt 3 }}\left( {{l_1} + {l_2} + {l_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{m_1} + {m_2} + {m_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{n_1} + {n_2} + {n_3}} \right)$$  
D. $$\frac{{{l_1}{l_2}{l_3}}}{{\sqrt 3 }},\,\frac{{{m_1}{m_2}{m_3}}}{{\sqrt 3 }},\,\frac{{{n_1}{n_2}{n_3}}}{{\sqrt 3 }}$$
Answer :   $$\frac{1}{{\sqrt 3 }}\left( {{l_1} + {l_2} + {l_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{m_1} + {m_2} + {m_3}} \right),\,\frac{1}{{\sqrt 3 }}\left( {{n_1} + {n_2} + {n_3}} \right)$$
Solution :
3D Geometry and Vectors mcq solution image
Let $$OA = OB = OC = 1$$     and their direction cosines are $${l_1},\,{m_1},\,{n_1};\,{l_2},\,{m_2},\,{n_2}$$     and $${l_3},\,{m_3},\,{n_3}$$   respectively.
Then $$A = \left( {{l_1},\,{m_1},\,{n_1}} \right),\,B = \left( {{l_2},\,{m_2},\,{n_2}} \right),\,C = \left( {{l_3},\,{m_3},\,{n_3}} \right)$$
and $$OA \bot OB,\,OB \bot OC,\,OC \bot OA.$$
Clearly, $$ABC$$  is equilateral, and $$OG$$  is equally inclined with $$OA,\,OB,\,OC$$    where $$G$$ is the centroid (also circumcentre) of the $$\Delta ABC.$$
$$G = \left( {\frac{{{l_1} + {l_2} + {l_3}}}{3},\,\frac{{{m_1} + {m_2} + {m_3}}}{3},\,\frac{{{n_1} + {n_2} + {n_3}}}{3}} \right)$$
$$\therefore $$  direction ratios of $$OG = {l_1} + {l_2} + {l_3},\,{m_1} + {m_2} + {m_3},\,{n_1} + {n_2} + {n_3}$$
$$\eqalign{ & {\text{Also,}}\,{\left( {{l_1} + {l_2} + {l_3}} \right)^2} + {\left( {{m_1} + {m_2} + {m_3}} \right)^2} + {\left( {{n_1} + {n_2} + {n_3}} \right)^2} \cr & = \sum {l_1^2} + \sum {l_2^2} + \sum {l_3^2 + 2\sum {{l_1}{l_2}} + 2\sum {{l_2}{l_3} + 2\sum {{l_3}{l_1}} } } \cr & = 1 + 1 + 1 + 0 \cr & = 3, \cr} $$
from the conditions of the problem.
$$\therefore $$  direction cosines of $$OG$$  are $$\frac{{{l_1} + {l_2} + {l_3}}}{{\sqrt 3 }},\,\frac{{{m_1} + {m_2} + {m_3}}}{{\sqrt 3 }},\,\frac{{{n_1} + {n_2} + {n_3}}}{{\sqrt 3 }}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section