Question

Locus of mid point of the portion between the axes of $$x\,\cos \,\alpha + y\,\sin \,\alpha = p$$     where $$p$$ is constant is-

A. $${x^2} + {y^2} = \frac{4}{{{p^2}}}$$
B. $${x^2} + {y^2} = 4{p^2}$$
C. $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{2}{{{p^2}}}$$
D. $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$  
Answer :   $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$
Solution :
Straight Lines mcq solution image
Equation of $$AB$$  is $$x\,\cos \,\alpha + y\,\sin \,\alpha = p;$$
$$\eqalign{ & \Rightarrow \frac{{x\,\cos \,\alpha }}{p} + \frac{{y{\mkern 1mu} \sin \,\alpha }}{p} = 1; \cr & \Rightarrow \frac{x}{{\frac{p}{{\cos \,\alpha }}}} + \frac{y}{{\frac{p}{{\sin \,\alpha }}}} = 1 \cr} $$
So co-ordinates of $$A$$ and $$B$$ are $$\left( {\frac{p}{{\cos \,\alpha }},\,0} \right){\text{ and }}\left( {0,\,\frac{p}{{\sin \,\alpha }}} \right);$$
So coordinates of midpoint of $$AB$$  are
$$\eqalign{ & \left( {\frac{p}{{2\,\cos \,\alpha }},\,\,\frac{p}{{2\,\sin \,\alpha }}} \right) = \left( {{x_1},\,{y_1}} \right)\left( {{\text{let}}} \right); \cr & {x_1} = \frac{p}{{2\,\cos \,\alpha }}\,\,\& \,\,{y_1} = \frac{p}{{2\,\sin \,\alpha }}; \cr & \Rightarrow \cos \,\alpha = \frac{p}{{2{x_1}}}\,\,\,{\text{and}}\,\,{\text{sin}}\,\alpha = \frac{p}{{2{y_1}}};\, \cr & {\cos ^2}\alpha + {\sin ^2}\alpha = 1 \cr & \Rightarrow \frac{{{p^2}}}{4}\left( {\frac{1}{{{x_1}^2}} + \frac{1}{{{y_1}^2}}} \right) = 1 \cr & {\text{Locus of}}\left( {{x_1},\,{y_1}} \right)\,{\text{is }}\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}{\text{ }} \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section