Question

Let $${z_1}\,{\text{and }}{z_2}$$   be two roots of the equation $${z^2} + az + b = 0,$$    $$z$$ being complex. Further , assume that the origin, $${z_1}\,{\text{and }}{z_2}$$   form an equilateral triangle. Then

A. $${a^2} = 4b$$
B. $${a^2} = b$$
C. $${a^2} = 2b$$
D. $${a^2} = 3b$$  
Answer :   $${a^2} = 3b$$
Solution :
$$\eqalign{ & {z^2} + az + b = 0\,;\,\,\,{z_1} + {z_2} = - a \, \& \, {z_1}{z_2} = b \cr & 0,{z_1},{z_2}\,\,{\text{from}}\,{\text{an}}\,{\text{equilateral}}\,\,\Delta \cr & \therefore {0^2} + {z_1}^2 + {z_2}^2 = 0.{z_1} + {z_1}.{z_2} + {z_2}.0 \cr} $$
$$\left( {{\text{For}}\,{\text{an}}\,{\text{equilateral}}\,{\text{triangle}},\,\,{z_1}^2 + {z_2}^2 + {z_3}^2 = {z_1}{z_2} + {z_2}{z_3} + {z_3}{z_1}} \right)$$
$$\eqalign{ & \Rightarrow \,\,{z_1}^2 + {z_2}^2 = {z_1}{z_2} \cr & \Rightarrow \,\,{\left( {{z_1} + {z_2}} \right)^2} = 3{z_1}{z_2} \cr & \therefore \,\,{a^2} = 3b \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section