Question

Let $${z_1}{\text{ and }}{z_2}{\text{ be }}{n^{th}}$$   roots of unity which subtend a right angle at the origin. Then $$n$$ must be of the form

A. $$4k + 1$$
B. $$4k + 2$$
C. $$4k +3$$
D. $$4k$$  
Answer :   $$4k$$
Solution :
$$\eqalign{ & {\text{Let }}z = {\left( 1 \right)^{\frac{1}{n}}} = {\left( {\cos 2k\pi + i\sin 2k\pi } \right)^{\frac{1}{n}}} \cr & \,\,z = \cos \frac{{2k\pi }}{n} + i\sin \frac{{2k\pi }}{n},k = 0,1,2,.....,n - 1. \cr & Let\,\,\,{z_1} = \cos \left( {\frac{{2{k_1}\pi }}{n}} \right) + i\sin \left( {\frac{{2{k_1}\pi }}{n}} \right) \cr & {\text{and }}{z_2} = \cos \left( {\frac{{2{k_2}\pi }}{n}} \right) + i\sin \frac{{2{k_2}\pi }}{n} \cr} $$
be the two values of $$z.$$ s.t. they subtend $$\angle $$ of 90° at origin.
$$\eqalign{ & \therefore \,\,\frac{{2{k_1}\pi }}{n} - \frac{{2{k_2}\pi }}{n} = \pm \frac{\pi }{2} \cr & \Rightarrow \,\,4\left( {{k_1} - {k_2}} \right) = \pm n \cr} $$
As $${k_1}$$ and $${k_2}$$ are integers and $${k_1} \ne {k_2}.$$
$$\therefore \,\,n = 4k,k \in {\text{I}}$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section