Question

Let $$z = {\log _2}\left( {1 + i} \right),$$    then $$\left( {z + \bar z} \right) + i\left( {z - \bar z} \right) = $$

A. $$\frac{{\ln 4 + \pi }}{{\ln 4}}$$
B. $$\frac{{\pi - \ln 4}}{{\ln 2}}$$
C. $$\frac{{\ln 4 - \pi }}{{\ln 4}}$$  
D. $$\frac{{\pi + \ln 4}}{{\ln 2}}$$
Answer :   $$\frac{{\ln 4 - \pi }}{{\ln 4}}$$
Solution :
$$\eqalign{ & z = {\log _2}\left( {1 + i} \right) \cr & = {\log _2}\left( {\sqrt 2 {e^{\frac{{i\pi }}{4}}}} \right) \cr & = \frac{1}{2} + i\frac{\pi }{4}{\log _2}e \cr & \therefore z + \bar z = 1{\text{ and }}z - \bar z = i\frac{\pi }{2}{\log _2}e \cr & {\text{Hence, }}\left( {z + \bar z} \right) + i\left( {z - \bar z} \right) \cr & = 1 - \frac{\pi }{2}{\log _2}e \cr & = 1 - \frac{\pi }{{2\ln 2}} \cr & = \frac{{\ln 4 - \pi }}{{\ln 4}} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section