Question

Let $$z = \cos \theta + i\sin \theta .$$    Then the value of $$\sum\limits_{m = 1}^{15} {{\text{Im}}\left( {{z^{2m - 1}}} \right)} \,\,{\text{at }}\theta = {{\text{2}}^ \circ }$$     is

A. $$\frac{1}{{\sin {2^ \circ }}}$$
B. $$\frac{1}{{3\sin {2^ \circ }}}$$
C. $$\frac{1}{{2\sin {2^ \circ }}}$$
D. $$\frac{1}{{4\sin {2^ \circ }}}$$  
Answer :   $$\frac{1}{{4\sin {2^ \circ }}}$$
Solution :
$$\eqalign{ & z = \cos \theta + i\sin \theta \cr & \Rightarrow \,\,{z^{2m - 1}} = {\left( {\cos \theta + i\sin \theta } \right)^{2m - 1}} \cr} $$
\[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \cos \left( {2m - 1} \right)\theta + i\sin \left( {2m - 1} \right)\theta \,\,\,\,\,\,\,\,\left[ \begin{array}{l} {\rm{using\,\, De\,\, Moiver's\,\, theorem}}\\ {\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta \end{array} \right]\]
$$\eqalign{ & \therefore \,\,{\text{Im}}\left( {{z^{2m - 1}}} \right) = \sin \left( {2m - 1} \right)\theta \cr & \therefore \,\,\sum\limits_{m = 1}^{15} {{\text{Im}}\left( {{z^{2m - 1}}} \right)} = \sum\limits_{m = 1}^{15} {\sin \left( {2m - 1} \right)\theta } \cr & = \sin \theta + \sin 3\theta + \sin 5\theta + ..... + {\text{upto 15 terms}} \cr & {\text{ = }}\frac{{\sin \left[ {15\left( {\frac{{2\theta }}{2}} \right)} \right].\sin \left[ {\theta + 14 \times \theta } \right]}}{{\sin \theta }} \cr} $$
\[\left[ \begin{array}{l} {\rm{Using\,\, sin}}\alpha + \sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha + 2\beta } \right) + ..... + n\,{\rm{terms}}\\ {\rm{ = }}\frac{{\sin \left( {\frac{{n\beta }}{2}} \right).\sin \left[ {\alpha + \frac{{\left( {n - 1} \right)\beta }}{2}} \right]}}{{\sin \left( {\frac{\beta }{2}} \right)}} \end{array} \right]\]
$$\eqalign{ & = \frac{{\sin 15\theta .\sin 15\theta }}{{\sin \theta }} \cr & = \frac{{\sin {{30}^ \circ }.\sin {{30}^ \circ }}}{{\sin {2^ \circ }}} \cr & = \frac{1}{{4\sin {2^ \circ }}} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section