Question

Let $$z = \frac{{\cos \theta + i\sin \theta }}{{\cos \theta - i\sin \theta }},\frac{\pi }{4} < \theta < \frac{\pi }{2}.$$       Then $$\arg z$$  is

A. $$2\theta $$  
B. $$2\theta - \pi $$
C. $$\pi + 2\theta$$
D. None of these
Answer :   $$2\theta $$
Solution :
$$z = {\left( {\cos \theta + i\sin \theta } \right)^2} = \cos 2\theta + i\sin 2\theta ,\,{\text{where }}\frac{\pi }{2} < 2\theta < \pi .$$
∴ $$z$$ is a complex number in the second quadrant. So, $$\frac{\pi }{2} < \arg \,z < \pi .$$
$$\therefore \,\,\arg\,z = {\tan ^{ - 1}}\left( {\tan 2\theta } \right) = 2\theta .$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section