Let $$z$$ be a complex number such that the imaginary part of $$z$$ is non-zero and $$a = {z^2} + z + 1\,$$ is real. Then a cannot take the value
A.
$$- 1$$
B.
$$\frac{1}{3}$$
C.
$$\frac{1}{2}$$
D.
$$\frac{3}{4}$$
Answer :
$$\frac{3}{4}$$
Solution :
$$\because \,\,{\text{Im}}\left( z \right) \ne 0$$
⇒ $$z$$ is non real and equation $${z^2} + z + \left( {1 - a} \right) = 0$$ will have non real roots, if $$D < 0$$
$$\eqalign{
& \Rightarrow \,\,1 - 4\left( {1 - a} \right) < 0 \cr
& \Rightarrow \,\,4a < 3 \cr
& \Rightarrow \,\,a < \frac{3}{4} \cr} $$
∴ $$a$$ can not take the value $$\frac{3}{4}$$
Releted MCQ Question on Algebra >> Complex Number
Releted Question 1
If the cube roots of unity are $$1,\omega ,{\omega ^2},$$ then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$