Question

Let $$z$$ be a complex number such that the imaginary part of $$z$$ is non-zero and $$a = {z^2} + z + 1\,$$   is real. Then a cannot take the value

A. $$- 1$$
B. $$\frac{1}{3}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$  
Answer :   $$\frac{3}{4}$$
Solution :
$$\because \,\,{\text{Im}}\left( z \right) \ne 0$$
⇒ $$z$$ is non real and equation $${z^2} + z + \left( {1 - a} \right) = 0$$     will have non real roots, if $$D < 0$$
$$\eqalign{ & \Rightarrow \,\,1 - 4\left( {1 - a} \right) < 0 \cr & \Rightarrow \,\,4a < 3 \cr & \Rightarrow \,\,a < \frac{3}{4} \cr} $$
∴ $$a$$ can not take the value $$\frac{3}{4}$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section